viernes, 22 de enero de 2016

ESTEQUIOMETRÍA


                                                                 

TEORÍA DEL FLOGISTO

La teoría del flogisto, sustancia hipotética que representa la inflamabilidad, es una teoría científica obsoleta según la cual toda sustancia susceptible de sufrir combustión contiene flogisto, y el proceso de combustión consiste básicamente en la decadencia de dicha sustancia. Fue postulada por primera vez en 1667 por el alquimista y físico alemán Johann Becher (1635-1682) para explicar el proceso químico de la combustión y fue defendida por su compatriota el médico y químico Georg Stahl (1659-1734). 
También se conocía desde hace mucho tiempo que algunas de estas sales metálicas podían ser transformadas de nuevo en los metales de partida. Stahl explicó este proceso suponiendo que los metales estaban formados por una cal y un principio inflamable que denominó flogisto, por lo que la calcinación, es decir, la formación de la cal, se podía explicar, al igual que la combustión, como un desprendimiento de flogisto, el cual se liberaba del metal y dejaba la cal al descubierto. El proceso inverso, la reducción de la cal al metal, podía ser igualmente explicada como una adición de flogisto. Si una sustancia rica en flogisto, como el carbón, era puesta en contacto con una cal metálica, podía transferirle su flogisto y dar lugar a la formación del metal.
En palabras claras, Stahl consideraba que los metales y en general todas las sustancias combustibles contienen una sustancia que carece de peso, tal sustancia es la llamada flogisto. Cuando se calcina un metal o durante la combustión de cualquier materia el flogisto se separa en forma de llamas dejando un residuo incombustible conocido en la alquimia como sal, comúnmente herrumbre al calcinar los metales o simplemente cenizas con una sencilla fórmula sería: carbón = flogisto + cenizas o Metal = flogisto + herrumbre. Para reintegrar la ceniza en carbón bastaría pues añadir flogisto: ceniza + flogisto = carbón, como se entendía que (sucede por ejemplo en el mismo carbón) aquellos cuerpos que arden sin apenas dejar residuo, casi todo él era flogisto, por tanto para reintegrar el metal, a la herrumbre añadiríamos flogisto, o lo que es lo mismo, un cuerpo muy rico en flogisto, así: herrumbre + carbón = metal.
                                                                   
                                                   LEY DE LAVOISIER 

 es una de las leyes fundamentales en todas las ciencias naturales. Fue elaborada independientemente por Mijaíl Lomonósov en 1745 y por Antoine Lavoisier en 1785. Se puede enunciar como «En una reacción química ordinaria, la masa permanece constante, es decir, la masa consumida de los reactivos es igual a la masa obtenida de los productos».1 Una salvedad que hay que tener en cuenta es la existencia de las reacciones nucleares, en las que la masa sí se modifica de forma sutil, en estos casos en la suma de masas hay que tener en cuenta la equivalencia entre masa y energía. Esta ley es fundamental para una adecuada comprensión de la química.
Los ensayos preliminares hechos por Robert Boyle en 1673 parecían indicar lo contrario: pesada meticulosa de varios metales antes y después de su oxidación mostraba un notable aumento de peso. Estos experimentos, por supuesto, se llevaban a cabo en recipientes abiertos.2
La combustión, uno de los grandes problemas que tuvo la química del siglo XVIII, despertó el interés de Antoine Lavoisier porque éste trabajaba en un ensayo sobre la mejora de las técnicas del alumbrado público de París. Comprobó que al calentar metales como el estaño y el plomo en recipientes cerrados con una cantidad limitada de aire, estos se recubrían con una capa de calcinado hasta un momento determinado del calentamiento, el resultado era igual a la masa antes de comenzar el proceso. Si el metal había ganado masa al calcinarse, era evidente que algo del recipiente debía haber perdido la misma cantidad de masa. Ese algo era el aire. Por tanto, Lavoisier demostró que la calcinación de un metal no era el resultado de la pérdida del misterioso flogisto, sino la ganancia de algún material: una parte de aire. La experiencia anterior y otras más realizadas por Lavoisier pusieron de manifiesto que si se tiene en cuenta todas las sustancias que forman parte en una reacción química y todos los productos formados, nunca varía la masa. Esta es la ley de la conservación de la masa, que podemos enunciarla, pues, de la siguiente manera: "En toda reacción química la masa se conserva, esto es, la masa total de los reactivos es igual a la masa total de los productos".


MASA ATÓMICA
   
La masa atómica es la masa de un átomo, más frecuentemente expresada en unidades de masa atómica unificada.1 La masa atómica puede ser considerada como la masa total de protones y neutrones (pues la masa de los electrones en el átomo es prácticamente despreciable) en un solo átomo (cuando el átomo no tiene movimiento). La masa atómica es algunas veces usada incorrectamente como un sinónimo de masa atómica relativa, masa atómica media y peso atómico; estos últimos difieren sutilmente de la masa atómica. La masa atómica está definida como la masa de un átomo, que sólo puede ser de un isótopo a la vez, y no es un promedio ponderado en las abundancias de los isótopos. En el caso de muchos elementos que tienen un isótopo dominante, la similitud/diferencia numérica real entre la masa atómica del isótopo más común y la masa atómica relativa o peso atómico estándar puede ser muy pequeña, tal que no afecta muchos cálculos bastos, pero tal error puede ser crítico cuando se consideran átomos individuales. Para elementos con más de un isótopo común, la diferencia puede llegar a ser de media unidad o más (por ejemplo, cloro). La masa atómica de un isótopo raro puede diferir de la masa atómica relativa o peso atómico estándar en varias unidades de masa.

El peso atómico estándar se refiere a la media de las masas atómicas relativas de un elemento en el medio local de la corteza terrestre y la atmósfera terrestre, como está determinado por la Commission on Atomic Weights and Isotopic Abundances (Comisión de Pesos Atómicos y Abundancias Isotópicas) de la IUPAC.2 Estos valores son los que están incluidos en una tabla periódica estándar, y es lo que es más usado para los cálculos ordinarios. Se incluye una incertidumbre en paréntesis que frecuentemente refleja la variabilidad natural en la distribución isotópica, en vez de la incertidumbre en la medida.3 Para los elementos sintéticos, el isótopo formado depende de los medios de síntesis, por lo que el concepto de abundancia isotópica natural no tiene sentido. En consecuencia, para elementos sintéticos, el conteo total de nucleones del isótopo más estable (esto es, el isótopo con la vida media más larga) está listado en paréntesis en el lugar del peso atómico estándar. El litio representa un caso único, donde la abundancia natural de los isótopos ha sido perturbada por las actividades humanas al punto de afectar la incertidumbre en su peso atómico estándar, incluso en muestras obtenidas de fuentes naturales, como los ríos.
 


                                                              
                                            MASA MOLECULAR

 La masa molecular o masa molecular relativa es un número que indica cuántas veces la masa de una molécula de una sustancia es mayor que la unidad de masa molecular y sus elementos, se calcula sumando todas las masas atómicas de dicho elemento. Su valor numérico coincide con el de la masa molar, pero expresado en unidades de masa atómica en lugar de gramos
Una reacción química es la manifestación de un cambio en la materia y la isla de un fenómeno químico. A su expresión gráfica se le da el nombre de ecuación química, en la cual, se expresan en la primera parte los reactivos y en la segunda los productos de la reacción.
A + B C + D
Reactivos Productos
Para equilibrar o balancear ecuaciones químicas, existen diversos métodos. En todos el objetivo que se persigue es que la ecuación química cumpla con la ley de la conservación de la materia.
/mol. La masa molecular alude una sola molécula, la masa molar corresponde a un mol (N = 6,022·1023) de moléculas.
La fórmula para calcularla es la siguiente:
masa molecular = masa atómica de A * n.º de átomos de A + masa atómica de B * n.º de átomos de B...
hasta que no queden átomos diferentes.
La masa molecular se calcula sumando las masas atómicas de los elementos que componen la molécula. Así, en el caso del agua: H2O, su masa molecular es:
masa atómica del H: 1,00797 u, aproximadamente igual a (≈) 1 * n.º de átomos de H: 2 + masa atómica del O: 15,9994 u ≈ 16 * n.º de átomos de O: → 2 átomos de H x 1 átomo de O = 2 u + 16 u = 18 u.
Si las cifras decimales son mayores que 0,5, el número másico se aproxima a la unidad entera siguiente. Ejemplo: el número másico del oxígeno es 15,9994 ≈ 16. Es decir, el número másico del O es 16.
Al igual que la masa atómica, la masa molecular se expresa en unidades de masa atómica: Umas (u) o daltons (Da), que son equivalentes. Los Da aportan la ventaja de poderse emplear para moléculas mayores al aceptar un múltiplo, el kilodalton: kDa.
La masa molecular se calcula de manera fácil sumando las masas atómicas. Por ejemplo la masa molecular del ácido sulfúrico:
H2SO4: H = 1,00797 Da; S = 32,065 Da; O = 15,9994 Da
H2 = 2 x 1,00797 Da = 2,01594 Da
S = 1 x 32,065 Da = 32,065 Da
O4 = 4 x 15,9994 Da = 63,9976 Da
Masa molecular = H2 + S + O4 = 2,01594 Da + 32,065 Da + 63,9976 Da = 98,07854 Da

                                                                       
                                                
                                                         


                                                   REACCIÓN QUÍMICA

 Una reacción química, cambio químico o fenómeno químico, es todo proceso termodinámico en el cual una o más sustancias (llamadas reactantes o "reactivos"), se transforman, cambiando su estructura molecular y sus enlaces, en otras sustancias llamadas productos. Los reactantes pueden ser elementos o compuestos. Un ejemplo de reacción química es la formación de óxido de hierro producida al reaccionar el oxígeno del aire con el hierro de forma natural, o una cinta de magnesio al colocarla en una llama se convierte en óxido de magnesio, como un ejemplo de reacción inducida.
A la representación simbólica de las reacciones se les denomina ecuaciones químicas.
Los productos obtenidos a partir de ciertos tipos de reactivos dependen de las condiciones bajo las que se da la reacción química. No obstante, tras un estudio cuidadoso se comprueba que, aunque los productos pueden variar según cambien las condiciones, determinadas cantidades permanecen constantes en cualquier reacción química. Estas cantidades constantes, las magnitudes conservadas, incluyen el número de cada tipo de átomo presente, la carga eléctrica y la masa total.
Reacciones de la química inorgánica
Desde un punto de vista de la química inorgánica se pueden postular dos grandes modelos para las reacciones químicas de los compuestos inorgánicos: reacciones ácido-base o de neutralización (sin cambios en los estados de oxidación) y reacciones redox (con cambios en los estados de oxidación).
Reacciones de la química orgánica
 la química orgánica,nos referimos a ellas teniendo como base a diferentes tipos de compuestos como alcanos, alquenos, alquinos, alcoholes, aldehídos, cetonas, etc; que encuentran su clasificación, reactividad y/o propiedades químicas en el grupo funcional que contienen y este último será el responsable de los cambios en la estructura y composición de la materia. Entre los grupos funcionales más importantes tenemos a los dobles y triples enlaces y a los grupos hidroxilo, carbonilo y nitro.
 
        
                    
                                  


                        BALANCEO DE ECUACIONES QUÍMICAS

Una reacción química es la manifestación de un cambio en la materia y la isla de un fenómeno químico. A su expresión gráfica se le da el nombre de ecuación química, en la cual, se expresan en la primera parte los reactivos y en la segunda los productos de la reacción.
A + B C + D
Reactivos Productos
Para equilibrar o balancear ecuaciones químicas, existen diversos métodos. En todos el objetivo que se persigue es que la ecuación química cumpla con la ley de la conservación de la materia.La ley de la conservación de la materia afirma que ningún átomo puede crearse o destruirse en una reacción química, así que el número de átomos que están presentes en los reactivos tiene que ser igual al número de átomos presentes en los productos. 



Es la representación gráfica o simbólica de una reacción química que muestra las sustancias, elementos o compuestos que reaccionan (llamados reactantes o reactivos) y los productos que se obtienen. La ecuación química también nos muestra la cantidad de sustancias o elementos que intervienen en la reacción, en sí es la manera de representarlas.



Es también llamado cambio químico y se define como todo proceso químico en el cual una o más sustancias sufren transformaciones químicas. Las sustancias llamas reactantes se combina para formar productos.
En la reacción química intervienen elementos y compuestos. Un ejemplo de ello es el Cloruro de Sodio (NaCl) o comúnmente conocido como "sal de mesa" o "sal común".
La diferencia entre una ecuación y una reacción química es simple: En la ecuación es la representación simbólica lo cual utilizamos letras, símbolos y números para representarla, mientras que en la reacción química es la forma "practica" de la misma (Cuando se lleva a cabo).

                                
         

                                                     
                                                    REACTIVOS

 Un reactivo o reactante es, en química, toda sustancia que interactúa con otra en una reacción química y que da lugar a otras sustancias de propiedades, características y conformación distinta, denominadas productos de reacción o simplemente productos.
Por tratarse de compuestos químicos, los reactivos se pueden clasificar según muchas variables: propiedades físicoquímicas, reactividad en reacciones químicas, características del uso del reactivo.
Sin embargo, por tratarse del concepto de reactivo la clasificación más adecuada en este caso sería la de características de su uso, según la cual se clasifican en el uso al que están destinados los reactivos. Esta clasificación viene dada en el envase del reactivo y depende del tratamiento que se le haya dado, de su riqueza, de su pureza que determina el uso químico que se le va a poder dar, teniendo en cuenta la precisión, exactitud y error absoluto que se ha de tener en la operación química a realizar.
Así los reactivos se pueden clasificar en:
Que produce reacción. Substancia que se emplea en química para reconocer la naturaleza de ciertos cuerpos por medio de la acción que produce sobre ellos (es casi lo mismo que sustancia reactante)
 En concreto, nos encontramos con tres grandes grupos de reactivos, como son líquidos, sólidos y preparados. No obstante, no podemos pasar por alto tampoco que también existe otra clasificación que los agrupa en dos:

Los reactivos de Grignard, descubiertos por el científico francés Victor Grignard, son sustancias organometálicas que reaccionan con electrófilos. Gracias a su hallazgo, Grignard obtuvo, en 1912, el Premio Nobel de Química.

El reactivo de Millon, por otra parte, se obtiene al disolver mercurio en ácido nítrico. La reacción química permite descubrir la presencia de tirosina en una solución ya que, ante la aparición de este aminoácido, se produce una mancha roja a partir del calentamiento de un coágulo de color blanco.
               
     

PRODUCTOS

 Un producto químico es un conjunto de compuestos químicos (aunque en ocasiones sea uno solo) destinado a cumplir una función. Generalmente el que cumple la función principal es un solo componente, llamado componente activo. Los compuestos restantes o excipientes, son para llevar a las condiciones óptimas al componente activo (concentración, pH, densidad, viscosidad, etc.), darle mejor aspecto y aroma, cargas (para abaratar costos), etc.
Por "producto químico" se entiende toda sustancia, sola o en forma de mezcla o preparación, ya sea fabricada u obtenida de la naturaleza, excluidos los organismos vivos. Ello comprende las siguientes categorías plaguicida, (incluidas las formulaciones plaguicidas extremadamente peligrosas) y productos de la industria química.

Según el Convenio de Rótterdam se pueden distinguir los siguientes tipos de productos químicos peligrosos para la salud humana y para el medio ambiente.
Productos químicos insolventes
Un producto químico insolvente es aquél cuyos usos dentro de una o más categorías han sido prohibidos en su totalidad, en virtud de una medida reglamentaria firme, con objeto de proteger la salud humana o el medio ambiente. Ello incluye los productos químicos cuya aprobación para primer uso haya sido denegada o que las industrias hayan retirado del mercado interior o de ulterior consideración en el proceso de aprobación nacional cuando haya pruebas claras de que esa medida se haya adoptado con objeto de proteger la salud humana o el medio ambiente.
Productos químicos rigurosamente restringidos
Un producto químico rigurosamente restringido es aquel cuyo uso dentro de una o más categorías haya sido prohibido prácticamente en su totalidad, en virtud de una medida reglamentaria firme, con objeto de proteger la salud humana o el medio ambiente, pero del que se sigan autorizando algunos usos específicos. Ello incluye los productos químicos cuya aprobación para prácticamente cualquier uso haya sido denegada o que las industrias hayan retirado del mercado interior o de ulterior consideración en el proceso de aprobación nacional cuando haya pruebas claras de que esa medida se haya adoptado con objeto de proteger la salud humana y el medio ambiente. Los productos químicos prohibidos son ácido, químico y desechos médicos o tóxicos.
Plaguicidas extremadamente peligrosos
Una formulación plaguicida extremadamente peligrosa es todo producto químico formulado para su uso como plaguicida que produzca efectos graves para la salud o el medio ambiente observables en un período de tiempo corto tras exposición simple o múltiple, en sus condiciones de uso.

  



REACTIVO LIMITANTE

 El reactivo limitante es el reactivo que en una reacción química determinada, da a conocer o limita, la cantidad de producto formado, y provoca una concentración especifica o limitante a la anterior.
Cuando una ecuación está balanceada, la estequiometria se emplea para saber los moles de un producto obtenido a partir de un número conocido de moles de un reactivo. La relación de moles entre reactivo y producto se obtiene de la ecuación balanceada.
Generalmente cuando se efectúa una reacción química los reactivos no se encuentran en cantidades estequiometricamente exactas, es decir, en las proporciones que indica su ecuación balanceada. En consecuencia, algunos reactivos se consumen totalmente, mientras que otros son recuperados al finalizar la reacción. El reactivo que se consume en primer lugar es llamado reactivo limitante, ya que la cantidad de éste determina la cantidad total del producto formado. Cuando este reactivo se consume, la reacción se detiene. El o los reactivos que se consumen parcialmente son los reactivos en exceso.
La cantidad de producto que se obtiene cuando reacciona todo el reactivo limitante se denomina rendimiento teórico de la reacción.
El concepto de reactivo limitante, permite a los químicos asegurarse de que un reactivo, el más costoso, sea completamente consumido en el transcurso de una reacción, aprovechándose así al máximo.
Método 1
Este método se basa en la comparación de la proporción de las cantidades de reactivo con la relación estequiometrico. Así, dada la ecuación general:
a X + b Y \rightarrow  c Z \,
Siendo X e Y reactivos, Z productos y a, b y c, sus respectivos coeficientes estequiométricos.
Si
\frac{mol \,X \,disponible}{mol \,Y \,disponible}< \frac{a}{b}entonces X es el reactivo limitante.
Si
\frac{mol \,X \,disponible}{mol \,Y \,disponible}> \frac{a}{b}entonces Y es el reactivo limitante.
Método 2
Este método consiste en el cálculo de la cantidad esperada de producto en función de cada reactivo.
Se permite que reaccionen 3g de dióxido de silicio y 4,5g de carbono a altas temperaturas, para dar lugar a la formación de carburo de silicio según la ecuación:
SiO_2 (s)+ 3 C(s) \rightarrow  SiC(s) + 2 CO(g)\,
Para encontrar el reactivo limitante debemos comparar la cantidad de producto que se obtiene con la cantidad dada de reactivo por separado. El reactivo que produzca la menor cantidad de producto es el reactivo limitante.
 \ \mbox{3g} SiO_2 \times \frac{1 \ \mbox{mol}\,SiC}{1 \ \mbox{mol}\,SiO_2}\times \frac{1 \ \mbox{mol}\,SiO_2}{60 \ \mbox{g}\,SiO_2} \times \frac{40 \ \mbox{g}\,SiC}{1 \ \mbox{mol}\,SiC}= 2\ \mbox{g}\,SiC \
 \ \mbox{4,5g} C \times \frac{1 \ \mbox{mol}\,SiC}{3 \ \mbox{mol}\,C} \times \frac{40 \ \mbox{g}\,SiC}{1 \ \mbox{mol}\,SiC}\times \frac{3 \ \mbox{mol}\,C}{36\ \mbox{g}\,C}= 5\ \mbox{g}\,SiC \
El reactivo limitante es, en este caso, el dióxido de silicio.

 http://media2.picsearch.com/is?84CnVrwaqr9F4Yjw8kf9EboUAxu6ogQEvifVsSpTc8Q&height=100 

REACTIVO EN EXCESO

  Cuando colocamos dos elementos o compuestos para  que reaccionen químicamente entre sí,  lo usual es colocar una cantidad exacta de uno de los reactivos, y colocar una cantidad en exceso del segundo reactivo, para asegurarnos que el primero podrá reaccionar completamente, y de esta manera, poder realizar cálculos basados en la ecuación química  ajustada  estequiométricamente
       El reactivo que se consume por completo es el llamado reactivo limitante, porque es el que determina la cantidad de producto que se puede producir en la reacción. Cuando el reactivo limitante se consume, la reacción se detiene.
El reactivo que no reacciona completamente, sino que “sobra”, es el denominado reactivo en exceso.
Si tenemos una cierta cantidad de dos elementos o compuestos diferentes, para producir una reacción química, podemos saber con anticipación cuál será el reactivo limitante y cuál el reactivo en exceso, realizando algunos cálculos basados en la ecuación química ajustada.
Tomemos por ejemplo la reacción de formación del amoníaco a partir de hidrógeno y nitrógeno.
 H2 + N2 = NH3

Si tengo 15 moles de hidrógeno y 10 moles de nitrógeno, ¿cuál será el reactivo limitante, cuál el reactivo en exceso, y cuántos moles de amoníaco se podrán obtener?
Lo primero que debemos hacer es ajustar la reacción, es decir, colocar los coeficientes estequiométricos adecuados, para que el número de átomos en los reactivos sea igual al número de átomos en los productos, y de esta manera cumplir con la ley de conservación de la materia.
Entonces la reacción ajustada (al tanteo), quedará de la siguiente manera:

3H2 + N2 = 2NH3

Esto se interpreta así: 3 moléculas o moles de hidrógeno reaccionan con una molécula o mol de nitrógeno para obtener 2 moles o moléculas de amoníaco.
Entonces, si  tengo 15 moles de hidrógeno,  reaccionarán con 5 moles de nitrógeno, sobrando otros 5 moles de este elemento. Por lo tanto en este caso, el hidrógeno es el reactivo limitante, y el nitrógeno, el reactivo en exceso. Si con tres moles de hidrógeno se producirían dos moles de amoníaco, con 15 moles de hidrógeno obtendremos 10 moles de amoníaco.
Podemos trabajar con la unidad que necesitemos, sean gramos o moles es indistinto, siempre que respetemos las proporciones estequiométricas representadas en la reacción.
Otra manera de hallar el reactivo en exceso y el reactivo limitante es calcular cuánta cantidad de producto se obtendría con cada uno. El reactivo con el cual se obtendría mayor cantidad de producto es el reactivo en exceso, y el otro, el reactivo limitante

 RENDIMIENTO DE UNA REACCIÓN


es la cantidad de producto obtenido en una reacción química.1 El rendimiento absoluto puede ser dado como la masa en gramos o en moles (rendimiento molar). El rendimiento fraccional o rendimiento relativo o rendimiento porcentual, que sirve para medir la efectividad de un procedimiento de síntesis, es calculado al dividir la cantidad de producto obtenido en moles por el rendimiento teórico en moles:


Para obtener el rendimiento porcentual, multiplíquese el rendimiento fraccional por 100% (por ejemplo, 0,673 = 67,3%).

Uno o más reactivos en una reacción química suelen ser usados en exceso. El rendimiento teórico es calculado basado en la cantidad molar del reactivo limitante, tomando en cuenta la estequiometría de la reacción. Para el cálculo, se suele asumir que hay una sola reacción involucrada.
El rendimiento teórico o ideal de una reacción química debería ser el 100%, un valor que es imposible alcanzar en la mayoría de puestas experimentales. De acuerdo con Vogel, los rendimientos cercanos al 100% son denominados cuantitativos, los rendimientos sobre el 90% son denominados excelentes, los rendimientos sobre el 80% muy buenos, sobre el 70% son buenos, alrededor del 50% son regulares, y debajo del 40% son pobres.1 Los rendimientos parecen ser superiores al 100% cuando los productos son impuros. Los pasos de purificación siempre disminuyen el rendimiento, y los rendimientos reportados usualmente se refieren al rendimiento del producto final purificado.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiYFNK7pJ1qDlGDGcfGzYSqg4GvQMLmGpNEaA_rqcYL0GEO_uZ3yccNJF6NGCV4gADuP5cS2oJv2ZWX_9Zhyphenhyphen-o8xsxVsUnBYDtB5LRFfo9ehXvsLnx8oFj_3JtokbybSa25_4nyvbEQDRA/s200/sintamoniaco.jpg 
\mbox{rendimiento fraccional} = \frac{\mbox{rendimiento real}}{\mbox{rendimiento teórico}}

¿QUÉ ES UN ÁTOMO?

Los átomos son la unidad básica de toda la materia, la estructura que define a todos los elementos y tiene propiedades químicas bien definidas. Todos los elementos químicos de la tabla periódica están compuestos por átomos con exáctamente la misma estructura y a su vez, éstos se componen de tres tipos de partículas, como los protones, los neutrones y los electrones.

 Los átomos son lo suficientemente pequeños para que la física clásica dé resultados notablemente incorrectos. A través del desarrollo de la física, los modelos atómicos han incorporado principios cuánticos para explicar y predecir mejor su comportamiento.

 Los electrones de un átomo son atraídos por los protones en un núcleo atómico por esta fuerza electromagnética. Los protones y los neutrones en el núcleo son atraídos el uno al otro por una fuerza diferente, la fuerza nuclear, que es generalmente más fuerte que la fuerza electromagnética que repele los protones cargados positivamente entre sí. Bajo ciertas circunstancias, la fuerza electromagnética repelente se vuelve más fuerte que la fuerza nuclear y los nucleones pueden ser expulsados del núcleo, dejando tras de sí un elemento diferente: desintegración nuclear que resulta en transmutación nuclear.

 No toda la materia del universo está compuesta de átomos. La materia oscura constituye más del universo que la materia y no se compone de átomos, sino de partículas de un tipo actualmente desconocido.




http://media5.picsearch.com/is?4weMCAcQTZCWJvrHT_jYNXx7f7EXSfAXZj0jKj8cJU4&height=240http://media3.picsearch.com/is?mzvr2-9yI-bwXm9iIfrHuc8Y5o9kQbgjy2uxwpcpzG8&height=271  

 ¿QUÉ ES UNA MOLÉCULA?

 En química, se llama molécula a un conjunto de al menos dos átomos enlazados covalentes que forman un sistema estable y eléctricamente neutro.1 2

Casi toda la química orgánica y buena parte de la química inorgánica se ocupan de la síntesis y reactividad de moléculas y compuestos moleculares. La química física y, especialmente, la química cuántica también estudian, cuantitativamente, en su caso, las propiedades y reactividad de las moléculas. La bioquímica está íntimamente relacionada con la biología molecular, ya que ambas estudian a los seres vivos a nivel molecular. El estudio de las interacciones específicas entre moléculas, incluyendo el reconocimiento molecular es el campo de estudio de la química supramolecular. Estas fuerzas explican las propiedades físicas como la solubilidad o el punto de ebullición de un compuesto molecular. Las moléculas rara vez se encuentran sin interacción entre ellas, salvo en gases enrarecidos y en los gases nobles. Así, pueden encontrarse en redes cristalinas, como el caso de las moléculas de H2O en el hielo o con interacciones intensas pero que cambian rápidamente de direccionalidad, como en el agua líquida. En orden creciente de intensidad, las fuerzas intermoleculares más relevantes son: las fuerzas de Van der Waals y los puentes de hidrógeno. La dinámica molecular es un método de simulación por computadora que utiliza estas fuerzas para tratar de explicar las propiedades de las moléculas

 Las moléculas lábiles pueden perder su consistencia en tiempos relativamente cortos, pero si el tiempo de vida medio es del orden de unas pocas vibraciones moleculares, estamos ante un estado de transición que no se puede considerar molécula. Actualmente, es posible el uso de láser pulsado para el estudio de la química de estos sistemas.

Las entidades que comparten la definición de las moléculas pero tienen carga eléctrica se denominan iones poliatómicos, iones moleculares o moléculas ion. Las sales compuestas por iones poliatómicos se clasifican habitualmente dentro de los materiales de base molecular o materiales moleculares.
Las partículas están formadas por moléculas. Una molécula viene a ser la porción de materia más pequeña que aun conserva las propiedades de la materia original.Las moléculas se encuentran fuertemente enlazadas con la finalidad de formar materia.Las moléculas están formadas por átomos unidos por medio de enlaces químicos.

http://media5.picsearch.com/is?Muc5YnINwqLDKuknDx2g6MU3lcvpi40mEWgdijm_6Es&height=248


 ¿QUÉ REPRESENTA EL NÚMERO DE AVOGADRO Y CUÁL ES SU VALOR? 


La constante de Avogadro (símbolos: L, NA) es el número de partículas elementales (usualmente átomos o moléculas) en un mol de una sustancia cualquiera, donde el mol es una de las siete unidades básicas del Sistema Internacional de Unidades (SI). Su dimensión es el recíproco del mol y su valor es igual a 6,022 140857(74)×1023 mol−1.2 3 4

Definiciones anteriores de cantidad química involucraron el número de Avogadro, un término histórico íntimamente relacionado a la constante de Avogadro pero definida de otra forma: inicialmente definido por Jean Baptiste Perrin como el número de átomos en un mol de hidrógeno. Luego fue redefinido como el número de átomos en 12 gramos del isótopo carbono-12 y posteriormente generalizado para relacionar cantidades de sustancia a sus pesos moleculares.5 Por ejemplo, de forma aproximada, 1 gramo de hidrógeno, que tiene un número másico de 1, contiene 6,022×1023 átomos de hidrógeno. De igual manera, 12 gramos de carbono-12 (número másico de 12) contiene el mismo número de átomos, 6,022×1023. El número de Avogadro es una magnitud adimensional y tiene el valor numérico de la constante de Avogadro, que posee unidades de medida.

 La constante de Avogadro es fundamental para entender la composición de las moléculas y sus interacciones y combinaciones. Por ejemplo, ya que un átomo de oxígeno se combinará con dos átomos de hidrógeno para crear una molécula de agua (H2O), de igual forma un mol de oxígeno (6,022×1023 de átomos O) se combinarán con dos moles de hidrógeno (2 × 6,022×1023 de átomos H) para crear un mol de H2O.


Valor de NA1
 Unidad
6,022140857(74)×1023
mol−1
2,73159734(12)×1026
(lb-mol)−1

1,707248434(77)×1025
(oz-mol)−1
















1 comentario:

  1. Top 5 Casinos Near Santa Barbara | DRMCD
    casinos in San 경주 출장안마 Francisco, Casinos Near Santa Barbara The state of California 창원 출장샵 is known 남양주 출장안마 for gambling, but 김천 출장안마 only by the 제주도 출장샵 name of that particular casino.

    ResponderEliminar